Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

3-Cyano-6-methyl-4-(2-naphthylethenyl)-1-benzopyran-2-one

L. Vijayalakshmi et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

3-Cyano-6-methyl-4-(2-naphthyl-ethenyl)-1-benzopyran-2-one

L. Vijayalakshmi, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a* }}$ Bharat Varu, ${ }^{\text {b }}$ Narasinh Dodia ${ }^{\text {b }}$ and Anamik Shah ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, Saurashtra University, Rajkot 360 005, India
Correspondence e-mail: sarati@bdu.ernet.in

Received 12 May 2000
Accepted 18 July 2000
Data validation number: IUC0000198
In the title compound, $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{NO}_{2}$, the naphthyl unit is planar and the benzopyran unit is nearly planar. These two moieties are inclined at an angle of $9.10(6)^{\circ}$ with respect to one another.

Comment

Many derivatives of benzopyrans are found to possess medicinal and biological activities (Malhotra et al., 1997). In order to study the activity of the title compound, (I), an X-ray structure analysis was undertaken. The naphthyl unit is planar with a maximum deviation of -0.037 (2) \AA for the C 21 atom. The benzopyran unit is nearly planar; torsion angles: $\mathrm{O} 1-$ C2-C3-C4-8.9 (3), C2-C3-C4-C10 7.8 (3), C3-C4-C10-C9-1.1 (3), C4-C10-C9-O1-4.5 (3), C10-C9$\mathrm{O} 1-\mathrm{C} 2-3.4$ (3) and $\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 33.0(3)^{\circ}$. The dihedral angle between the benzopyran and naphthyl rings is $9.10(6)^{\circ}$. As a result, there is conjugation which is evident from the alternate single and double bonds: $\mathrm{O} 10=\mathrm{C} 21.202$ (3), $\mathrm{C} 2-$ C3 1.456 (3), C3=C4 1.370 (3), C4-C14 1.464 (3), C14- C15 1.333 (3), C15-C23 1.464 (3), C23= 221.367 (3), C22-C21 1.411 (3), C21 = C 201.357 (4) and C20-C25 1.400 (4) Å. No unusual bond lengths or angles were observed (Allen et al., 1987).

(I)

Experimental

A mixture of 3-cyano-4,6-dimethyl-1-benzopyran-2-one (0.01 mol) and 1-naphthaldehyde (0.01 mol) was dissolved in chloroform
$(140 \mathrm{ml})$ and a few drops of piperidine were added as a catalyst. The mixture was heated with stirring for $13-14 \mathrm{~h}$. After evaporation, the solid residue obtained was recrystallized from dimethylformamide to give dark-yellow crystals (m.p. 514 K ; yield 49%).

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{NO}_{2}$
$M_{r}=337.36$
Monoclinic, $P 2_{1} / c$
$a=7.814$ (5) \AA 。
$b=11.561$ (3) \AA
$c=18.580$ (7) \AA
$\beta=101.96$ (4) ${ }^{\circ}$
$V=1642.0(13) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.365 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=2-25^{\circ} \\
& \mu=0.087 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Rectangular, dark yellow } \\
& 0.15 \times 0.12 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.974, T_{\text {max }}=0.994$
3103 measured reflections
2878 independent reflections
2095 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& R_{\text {int }}=0.024 \\
& \theta_{\max }=25^{\circ} \\
& h=0 \rightarrow 9 \\
& k=0 \rightarrow 13 \\
& l=-22 \rightarrow 21 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { frequency: } 150 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.144$
$S=0.831$
2878 reflections
238 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0935 P)^{2}\right. \\
&+0.9948 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{O} 1-\mathrm{C} 2$	$1.352(3)$	$\mathrm{C} 9-\mathrm{C} 8$	$1.374(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.378(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.370(3)$
$\mathrm{C} 10-\mathrm{C} 9$	$1.397(3)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.456(3)$
$\mathrm{C} 10-\mathrm{C} 5$	$1.399(3)$	$\mathrm{O} 10-\mathrm{C} 2$	$1.202(3)$
$\mathrm{C} 10-\mathrm{C} 4$	$1.446(3)$	$\mathrm{C} 12-\mathrm{N} 12$	$1.139(3)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$-177.5(2)$	$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$3.0(3)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	$3.4(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1$	$-8.9(3)$
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$-2.1(3)$	$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 13$	$-178.4(2)$
$\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9-\mathrm{O} 1$	$-4.5(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$-1.7(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4-\mathrm{C} 3$	$-1.1(3)$		

The title structure was solved by DIRDIF methods taking naphthalene coordinates from DIRDIF ORBASE (DIRDIF96; Beurskens et al., 1996). All H atoms were located from difference Fourier maps and were included in the structure-factor calculations with isotropic displacement parameters equal to $1.1 U_{\text {eq }}$ of the carrier atom, but the parameters were not refined (Sheldrick, 1997). The geometrical calculations were performed using PARST (Nardelli, 1996).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: MolEN (Fair, 1990); data reduction: MolEN; program(s) used to solve structure: DIRDIF96 (Beurskens et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

One of the authors wishes to thank Dr Babu Vergheese for the data collection carried out at IIT, Chennai, India.

electronic papers

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1996). The DIRDIF96 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Malhotra, S., Parmar, V. S. \& Errington, W. (1997). Acta Cryst. C53, 1442-1444.
Nardelli, M. (1996). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

